lmridge: A Comprehensive R Package for Ridge Regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP

Many important traits in plant breeding are polygenic and therefore recalcitrant to traditional marker-assisted selection. Genomic selection addresses this complexity by including all markers in the prediction model. A key method for the genomic prediction of breeding values is ridge regression (RR), which is equivalent to best linear unbiased prediction (BLUP) when the genetic covariance betwe...

متن کامل

EBglmnet: a comprehensive R package for sparse generalized linear regression models.

EBglmnet is an R package implementing empirical Bayesian method with both lasso (EBlasso) and elastic net (EBEN) priors for generalized linear models. In our previous studies, both EBlasso and EBEN outperformed other state-of-the-art methods such as lasso and elastic net in inferring sparse genotype and phenotype associations, in which the number of covariates is typically much larger than the ...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

ERAF: A R Package for Regression and Forecasting

We present a package for R language containing a set of tools for regression using ensembles of learning machines and for time series forecasting. The package contains implementations of Bagging and Adaboost for regression, and algorithms for computing mutual information, autocorrelation and false nearest neighbors.

متن کامل

SCGLR - An R Package for Supervised Component Generalized Linear Regression

The objective of this paper is to present an R package, SCGLR, implementing a new PLS regression approach in the multivariate generalized linear framework. The method allows the joint modeling of random variables from different exponential family distributions, searching for common PLS-type components. We discuss several of the functions in the package focusing in particular on the two main one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The R Journal

سال: 2019

ISSN: 2073-4859

DOI: 10.32614/rj-2018-060